Measure-Dependent Stochastic Nonlinear Beam Equations Driven by Fractional Brownian Motion
نویسندگان
چکیده
We study a class of nonlinear stochastic partial differential equations arising in themathematical modeling of the transversemotion of an extensible beam in the plane. Nonlinear forcing terms of functional-type and those dependent upon a family of probability measures are incorporated into the initial-boundary value problem (IBVP), and noise is incorporated into the mathematical description of the phenomenon via a fractional Brownian motion process. The IBVP is subsequently reformulated as an abstract second-order stochastic evolution equation driven by a fractional Brownian motion (fBm) dependent upon a family of probability measures in a real separableHilbert space and is studied using the tools of cosine function theory, stochastic analysis, andfixed-point theory. Global existence and uniqueness results for mild solutions, continuous dependence estimates, and various approximation results are established and applied in the context of the model.
منابع مشابه
Existence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملStochastic Differential Equations Driven by Fractional Brownian Motion and Standard Brownian Motion
We prove an existence and uniqueness theorem for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter H > 1/2 and a multidimensional standard Brownian motion. The proof relies on some a priori estimates, which are obtained using the methods of fractional integration, and the c...
متن کاملSemilinear Stochastic Equations in a Hilbert Space with a Fractional Brownian Motion
The solutions of a family of semilinear stochastic equations in a Hilbert space with a fractional Brownian motion are investigated. The nonlinear term in these equations has primarily only a growth condition assumption. An arbitrary member of the family of fractional Brownian motions can be used in these equations. Existence and uniqueness for both weak and mild solutions are obtained for some ...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014